缓存击穿、缓存并发和缓存雪崩是常见的由于并发量大而导致的缓存问题,本节讲解其产生原因和解决方案。
- 缓存击穿通常是由恶意攻击或者无意造成的;
- 缓存并发是由设计不足造成的;
- 缓存雪崩是由缓存同时失效造成的;
三种问题都比较典型,也是难以防范和解决的。本节给出通用的解决方案,以供在缓存设计的过程中参考和使用。
缓存击穿
-
概念:
缓存击穿
指的是使用不存在的key进行大量的高并发查询,这导致缓存无法命中,每次请求都要击穿到后端数据库系统进行查询,使数据库压力过大,甚至使数据库服务被压死。 -
解决方案:
我们通常将空值缓存起来,再次接收到同样的查询请求时,若命中缓存并且值为空,就会直接返回,不会透传到数据库,避免缓存击穿。当然,有时恶意袭击者可以猜到我们使用了这种方案,每次都会使用不同的参数来查询,这就需要我们对输入的参数进行过滤,例如,如果我们使用ID进行查询,则可以对ID的格式进行分析,如果不符合产生ID的规则,就直接拒绝,或者在ID上放入时间信息,根据时间信息判断ID是否合法,或者是否是我们曾经生成的ID,这样可以拦截一定的无效请求。
当然,每个设计人员都应该对服务的可用性和健壮性负责,应该建设健壮的服务,让我们的服务像不倒翁一样,因此,我们需要对服务设计限流和熔断等功能,请参考《分布式服务架构:原理、设计与实战》中第1章关于微服务设计模式的内容。
缓存并发
-
概念:
缓存并发
的问题通常发生在高并发的场景下,当一个缓存key过期时,因为访问这个缓存key 的请求量较大,多个请求同时发现缓存过期,因此多个请求会同时访问数据库来查询最新数据,并且回写缓存,这样会造成应用和数据库的负载增加,性能降低,由于并发较高,甚至会导致数据库被压死。 -
我们通常有3种方式来解决这个问题。
-
分布式锁
使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。 -
本地锁
与分布式锁类似,我们通过本地锁的方式来限制只有一个线程去数据库中查询数据,而其他线程只需等待,等前面的线程查询到数据后再访问缓存。但是,这种方法只能限制一个服务节点只有一个线程去数据库中查询,如果一个服务有多个节点,则还会有多个数据库查询操作,也就是说在节点数量较多的情况下并没有完全解决缓存并发的问题。 -
软过期
软过期指对缓存中的数据设置失效时间,就是不使用缓存服务提供的过期时间,而是业务层在数据中存储过期时间信息,由业务程序判断是否过期并更新,在发现了数据即将过期时,将缓存的时效延长,程序可以派遣一个线程去数据库中获取最新的数据,其他线程这时看到延长了的过期时间,就会继续使用旧数据,等派遣的线程获取最新数据后再更新缓存。
也可以通过异步更新服务来更新设置软过期的缓存,这样应用层就不用关心缓存并发的问题了。
缓存雪崩
-
概念:
缓存雪崩
指缓存服务器重启或者大量缓存集中在某一个时间段内失效,给后端数据库造成瞬时的负载升高的压力,甚至压垮数据库的情况。 -
解决方案:
通常的解决办法是对不同的数据使用不同的失效时间,甚至对相同的数据、不同的请求使用不同的失效时间,例如,我们要缓存user数据,会对每个用户的数据设置不同的缓存过期时间,可以定义一个基础时间,假设10秒,然后加上一个两秒以内的随机数,过期时间为10~12秒,就会避免缓存雪崩。